Existence of multiple solutions for Sturm-Liouville boundary value problems
Authors
Abstract:
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
similar resources
Existence of Positive Solutions for Singular P-laplacian Sturm-liouville Boundary Value Problems
We prove the existence of positive solutions of the Sturm-Liouville boundary value problem −(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1), au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0, where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the...
full textOn the Existence of Minimal and Maximal Solutions of Discontinuous Functional Sturm-liouville Boundary Value Problems
In Section 2, we give first an existence result for problems where the second, the functional argument u of g, is replaced in (1.1) by fixed functions v ∈ C(J), and study the dependence of solution sets of these problems on v. The so obtained results and a fixed point result for multifunctions proved recently in [7] are then used in Section 3 to derive existence results for minimal and maximal ...
full textLecture 28: Sturm-Liouville Boundary Value Problems
In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a general class of boundary value problems that share a common set of properties. The so-called Sturm-Liouville Problems define a class of eigenvalue problems, which include many of the previous problems as special cases. The S − L Problem helps to identify those assumptions that ar...
full textPositive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u...
full textPositive Solutions for Singular Sturm-Liouville Boundary Value Problems with Integral Boundary Conditions
In this paper, we study the second-order nonlinear singular Sturm-Liouville boundary value problems with Riemann-Stieltjes integral boundary conditions −(p(t)u(t)) + q(t)u(t) = f(t, u(t)), 0 < t < 1, α1u(0)− β1u (0) = ∫ 1 0 u(τ)dα(τ), α2u(1) + β2u (1) = ∫ 1 0 u(τ)dβ(τ), where f(t, u) is allowed to be singular at t = 0, 1 and u = 0. Some new results for the existence of positive solu...
full textStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
full textMy Resources
Journal title
volume 8 issue 4
pages 0- 0
publication date 2022-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023