Existence of multiple solutions for Sturm-Liouville boundary value problems

Authors

Abstract:

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Existence of Positive Solutions for Singular P-laplacian Sturm-liouville Boundary Value Problems

We prove the existence of positive solutions of the Sturm-Liouville boundary value problem −(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1), au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0, where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the...

full text

On the Existence of Minimal and Maximal Solutions of Discontinuous Functional Sturm-liouville Boundary Value Problems

In Section 2, we give first an existence result for problems where the second, the functional argument u of g, is replaced in (1.1) by fixed functions v ∈ C(J), and study the dependence of solution sets of these problems on v. The so obtained results and a fixed point result for multifunctions proved recently in [7] are then used in Section 3 to derive existence results for minimal and maximal ...

full text

Lecture 28: Sturm-Liouville Boundary Value Problems

In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a general class of boundary value problems that share a common set of properties. The so-called Sturm-Liouville Problems define a class of eigenvalue problems, which include many of the previous problems as special cases. The S − L Problem helps to identify those assumptions that ar...

full text

Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u...

full text

Positive Solutions for Singular Sturm-Liouville Boundary Value Problems with Integral Boundary Conditions

In this paper, we study the second-order nonlinear singular Sturm-Liouville boundary value problems with Riemann-Stieltjes integral boundary conditions    −(p(t)u(t)) + q(t)u(t) = f(t, u(t)), 0 < t < 1, α1u(0)− β1u (0) = ∫ 1 0 u(τ)dα(τ), α2u(1) + β2u (1) = ∫ 1 0 u(τ)dβ(τ), where f(t, u) is allowed to be singular at t = 0, 1 and u = 0. Some new results for the existence of positive solu...

full text

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

  Abstract.   The Sturm-Liouville boundary value problem of the multi-order fractional differential equation  is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  0- 0

publication date 2022-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023